MARKING KEY

188178_2.DOC

PHYSICS SECTION ONE: SHORT ANSWER

Question 1(a) Wave period

wave period	
Description	Mark
Period = 12 s.	1

Question 1(b) Wave frequency

• •	Description	Mark
frequency = $\frac{1}{\text{period}}$		1
$=\frac{1}{12}\mathrm{s}^{-1}=0.083\mathrm{Hz}$.		1

Question 1(c) Number of waves

	Description	Mark	
period = 12 s		1	
$5.0 \min = 300 s$		1	
$\therefore n^{\circ} \text{ waves} = \frac{300}{12} = 25 \cdot$		1	

Question 2 Light bulb

Description		Mark	
P = VI			1
$I = \frac{P}{V} = \frac{60}{250}$			1
= 0.24 A .			1

Question 3 Standing waves

Description	Mark
The lines represent the maximum amplitude, at any point, of the air molecules in the tube.	1

Question 4(a) Alternating current

Description	Mark
The emf alternates OR the current direction alternates.	1

Question 4(b) AC home delivery

Description	Mark
High voltages are more efficient for long distance power transmission.	1
Low voltages are safer for domestic use.	1
AC allows transformers to step current up and down.	1

Question 5 Seesaw

Description	Mark
Assume: child has mass 25 kg (allow 5-50 kg)	1
Assume: child is 2 m from the fulcrum (allow 1-4 m)	1
$\tau = rF$	1
= (2)(25)(9.8) m N = 490 m N. (allow 49-1960 m N)	1

Question 6 Magnetic field

Magnetie neia	
Description	Mark
False.	1
Moving charges create magnetic fields.	1

Question 7(a) Electric field

Description	
Description	Mark
$E = \frac{V}{d} = \frac{18}{0.04} = 450 \text{ V m}^{-1}$	1

Question 7(b) Electric field

	Description		Mark
$E = \frac{V}{d} = \frac{18}{0.04} = 450 \text{ V m}^{-1}$			1

Question 8(a) Transformer

Description	Mark
$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	1
$V_{s} = \frac{N_{s} \times V_{p}}{N_{p}} = \frac{600 \times 120}{200}$	1
V _s = 360 V	1

Question 8(b) Current in transformer

Description	Mark
In an ideal transformer, $P_{in} = P_{out}$	1
so $V_{in}I_{in} = V_{out}I_{out}$	1
$\frac{I_{out}}{I_{in}} = \frac{V_{in}}{V_{out}}, \text{ so } \frac{I_{out}}{I_{in}} = \frac{120}{360} = 1:3$	1

Question 9 Big bang

Description	Mark
The Universe is expanding.	1
The rate of recession for galaxies etc increases with distance.	1

Question 10 Force between moons

Description	Mark
Minimum force is when they are furthest apart. Distance = $(4.22 \times 10^8 + 1.07 \times 10^9)$ m = 1.492 x 10 ⁹ m apart	1
$F_{g} = G \frac{m_{I}m_{G}}{d^{2}}$	1
$F_{g} = 6.67 \times 10^{-11} \times \frac{8.93 \times 10^{22} \times 1.48 \times 10^{23}}{(1.492 \times 10^{9})^{2}} = 3.96 \times 10^{17} \text{ N}$	1

Question 11 Quasars

Description	Mark
Red shift is a Doppler effect showing that the emitter is moving away from us.	1
Large red shift means high recession rate.	1
Recession rates increase with distance.	1

Question 12 Lenz's law

Description	Mark
Aluminium is a good conductor.	1
The falling magnet's magnetic field induces eddy currents in the tube.	1
These eddy currents oppose the change that created them (Lenz's law) and slow down the falling magnet.	1
Plastic is not a conductor so no eddy currents are created in it.	1

Question 13 Circular motion free body diagram

Description	Mark
weight force = $mg = 20x9.8 = 196 N$	1
Angle between pole and chains: $\sin \theta = \frac{0.7}{1.8}$ $\theta = 22.89^{\circ}$	1
Tension in each chain has vertical component = half the child's weight $T_v = \frac{T \cos \theta}{2}$	1
$T = \frac{T_v}{2\cos\theta} = \frac{196}{2\cos 22.89^\circ} = 106 \text{N}.$	1
1.80 m 106 N 0.70 m 196 N	2

SECTION TWO: PROBLEM-SOLVING

Question 14(a) Standing wave formation

Description	Mark
The quiet places are displacement nodes (or pressure antinodes) in a standing wave.	1
The two speakers had the same frequency, and in air both have the same wavelength and speed.	1
A standing wave forms from interference between two such waves, travelling in opposite directions.	1

Question 14(b)(i) Error reduction

Description	Mark
B: Measure the distance between several quiet spots	1

Question 14(b)(ii) Explaining error reduction

Description	Mark
Measuring a greater distance involves the same absolute error.	1
Sam should divide the distance by the number of internodal distances to determine the value for one internodal distance.	1
This reduces the relative error in distance measurement.	1

Question 14(c) Speed of sound

•	Description	Mark
int ernodal distance = $\frac{1}{2}\lambda$		1
so $\lambda = 2 \times 0.39 = 0.78 \text{ m}$		
$v = f\lambda = (440)(0.78)$		1
$v = 3.4 \times 10^2 \text{ m s}^{-1}$.		1

Question 15(a)(i) Frequency of AC

•	Description	Mark
83.3 Hz.		1

Question 15(a)(ii) Power to lamp

Description	Mark
$P = \frac{V^2}{R}$	1
$P = \frac{4.4^2}{1.1} = 18 \text{ W}.$	1

Question 15(b) Magnetic field strength

Description	Mark
$\therefore \Delta t = \frac{1}{4} T = \frac{1}{4} (\frac{1}{83.3}) = 0.00300 \text{ s}$	1
$emf = -N \frac{\Delta \Phi}{\Delta t}$	1
$\Delta \Phi = \frac{(\text{emf})(\Delta t)}{N} = \frac{(4.4)(0.003)}{400} = 3.3 \times 10^{-5} \text{ Wb}$	1
In ¼ turn, $\Delta \Phi = \Phi - 0 = \Phi$	1
$B = \frac{\Phi}{A}$	1
$B = \frac{3.3 \times 10^{-5}}{140 \times 10^{-6}} = 0.24 T .$	1

Question 15(c)

Commutator	used to	change	to DC
------------	---------	--------	-------

Description	Mark
Required commutator is a split ring.	1
This reverses the induced current in phase with the reversal of the field through the coil.	1
In effect this keeps current direction constant.	1

Question 16(a)(i) Trajectory

no air resistance - with air resistance

Mark
1
1
_

Question 16(a)(ii) Effect of air resistance

Description	Mark
Starts along the same path, becomes more strongly curved.	1

Question 16(a)(iii) Explaining effect of air resistance

Description	Mark
Air resistance decreases the forward component of velocity.	1
So the ball does not travel as far forward in the time of flight.	1

Description	Mark
No.	1
The ball is continually subject to the acceleration due to gravity.	1

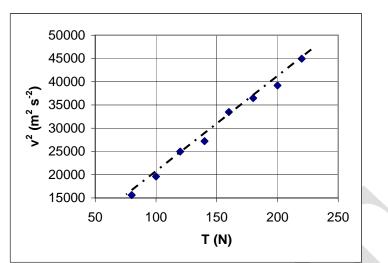
Question 16(b)(i) Flight time

Description	Mark
Vertical component of initial velocity $= u \sin \theta = (55)(\sin 1.5^{\circ}) = 1.44 \text{ m s}^{-1}$	1
Vertical motion $s = ut + \frac{1}{2}gt^2$; let up be positive.	1
$t = \sqrt{\frac{2 s}{g}} = \sqrt{\frac{2 (-0.35)}{-9.8}} = 0.267 s.$	1

Question 16(b)(ii)

Range	
Description	Mark
Horizontal component of initial velocity = $u \cos \theta = (55)(\cos 1.5^\circ) = 54.98 \text{ m s}^{-1}$	1
Horizontal motion $S = Vt$.	1
s = (54.98)(0.267) = 14.7 m	1

Question 17(a)(i) Plotting v² vs T

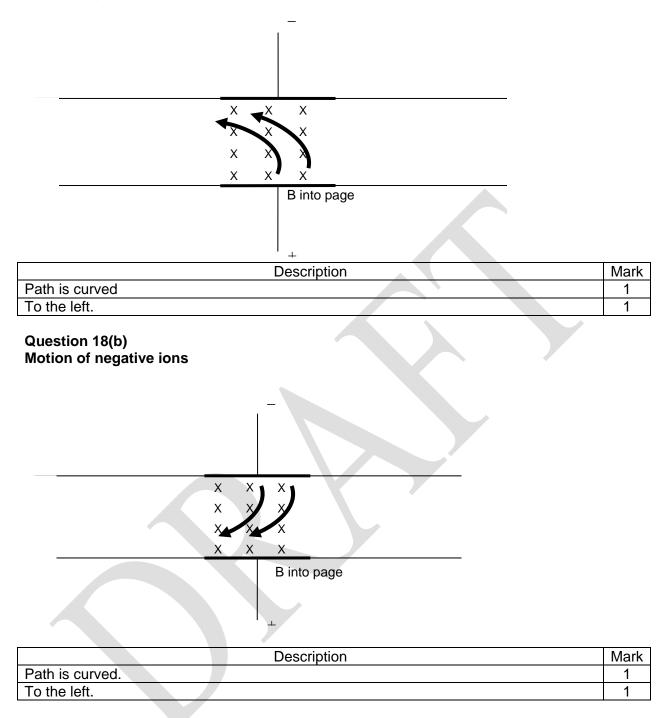

Description	Mark
v^2 vs T gives a straight line, v vs T does not OR v vs T does not map the function.	1
A straight line allows gradient to be calculated more easily and accurately.	1

Question 17(a)(ii)

Units of μ

Description	Mark
$\mu = \frac{T}{v^2} = \frac{\text{force}}{\text{velocity}^2}$	1
units of $\mu = \frac{\text{kg m s}^{-2}}{\text{m}^2 \text{ s}^{-2}}$. So the units of μ are kg m ⁻¹ (accept N s ² m ⁻²).	1

Question 17(b) Experimental value for μ



De	escription	Mark
Draw line of best fit by eye.		1
gradient = $\frac{rise}{run}$		1
gradient = $\frac{(45000 - 15000) \text{ m}^2 \text{ s}^{-2}}{(210 - 75) \text{ N}}$		1
gradient = $222 \mathrm{m kg^{-1}}$		
since $v^2 = \frac{1}{\mu}T$, thus gradient $= \frac{1}{\mu}$		1
$\mu = \frac{1}{\text{gradient}} = \frac{1}{222.222} \text{kg m}^{-1}$		1
$\mu = 0.00450 \text{ kg m}^{-1}$ (or 4.50 g m ⁻¹).		

Question 17(c) Fundamental mode when stretched

Description	Mark
The wave velocity is $v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{125}{4.5 \times 10^{-3}}} = 166.7 \text{ m s}^{-1}$	1
The wavelength is (2×0.76) m	1
so we can find the frequency	
$f = \frac{v}{\lambda} = 110 \text{ Hz.}$	1

Question 18(a) Motion of positive ions

Question 18(c) How the pump works

Description	Mark
The electric field accelerates both positively and negatively charged particles so they move across the tube.	1
Charged particles moving across magnetic field lines experience a magnetic force at right angles to both the movement and the magnetic field.	1
This pushes the charged particles to the left whether their charge is positive or negative.	1
The charged particles drag the solution with them as they move, so the pump moves the entire solution.	1
As particles leave the pump to the left, more arrive from the right and the process repeats.	1

Question 18(d) Energy transfer in pump

Description	Mark
The electric field transfers energy to the charged particles.	1
The charged particles transfer energy to the liquid.	
The magnetic field does not transfer energy to the charges.	1

Question 19(a)(i) Ionisation energy

	Description	Mark
Minimum energy = 5.3 eV		1

Question 19(a)(ii) Process

1100633	
Description	Mark
The arrow represents an electron falling to a lower energy level.	1
The result is the emission of a photon.	1
Whose energy is equal to the energy difference between the levels.	1

Question 19(b)(i) Two yellow lines

Description	Mark
Two energy levels are very close together. Electron transitions from these energy levels to the ground state produce almost equal wavelengths.	1
$\lambda = \frac{hc}{E}$	1
$\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2.103 \times 1.6 \times 10^{-19}} \text{ m}$ $\lambda = 5.91 \times 10^{-7} \text{ m} \text{ (591 nm)} \text{ (allow 590-592 nm)}$	1

Question 19(b)(ii) Electron transition

Question 19(c) Using the spectrum

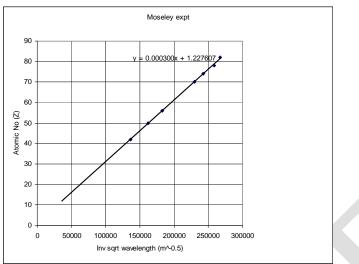
Description	Mark
Each line in the spectrum represents a transition between energy levels.	1
These transitions are unique to each element and so can be used to identify specific	1
elements.	1

SECTION THREE: COMPREHENSION

Question 20(a)(i) Producing X-rays

Description	Mark
X-rays are produced when high energy electrons are rapidly decelerated—as when striking the molybdenum target.	1
The peaks result when electrons are lost ('knocked out') from the lowest energy levels (shells) of a molybdenum atom.	1
When electrons from higher levels drop into the vacant spaces, X-rays of a specific energy are produced. Note: K_{α} results from electron transition from L shell to K shell K_{β} results from electron transition from M shell to K shell	1

Question 20(a)(ii) Electron energy


Description	Mark
35 kV	1
Max energy of incoming electrons corresponds to shortest wavelength X-ray = 0.035nm (estimate)	1
W = Vq = hf = $\frac{hc}{\lambda}$ ∴ V = $\frac{hc}{q\lambda} = \frac{6.63 \times 10^{-34} (3 \times 10^8)}{1.60 \times 10^{-19} (0.035 \times 10^{-9})} = 3.6 \times 10^4 \text{ V} = 36 \text{ kV}$	1
[possible range that might be calculated = 35-41 kV] Question 20(b)(i) Table	

Question 20(b)(i) Table

Element	Wavelength (m)	$rac{1}{\sqrt{\lambda}}$ (m ^{-1/2})
Molybdenum	5.4 x 10 ⁻¹¹	1.4 x 10⁵
Tin	3.8 x 10 ⁻¹¹	1.6 x 10⁵
Barium	3.0 x 10 ⁻¹¹	1.8 x 10 ⁵
Ytterbium	1.9 x 10 ⁻¹¹	2.3 x 10 ⁵
Tungsten	1.7 x 10 ⁻¹¹	2.4 x 10 ⁵
Platinum	1.5 x 10 ⁻¹¹	2.6 x 10⁵
Lead	1.4 x 10 ⁻¹¹	2.7 x 10⁵
	+	

Description	Mark
Wavelengths all correctly calculated OR mostly correct (1 mark)	2
$\frac{1}{\sqrt{\lambda}}$ all correctly calculated OR mostly correct (1 mark)	2

Question 20(b)(ii) Graph

	Description	Mark
Axes marked.		1
Points plotted.		1
Line of best fit.		1

Question 20(c)(i) Gradient

Ordalom	
Description	Mark
gradient = $\frac{\text{rise}}{\text{run}} = \frac{\text{change in y - values}}{\text{change in x - values}}$	1
gradient = $\frac{85 - 50}{2.80 - 1.64}$ = 3.0x10 ⁻⁴ m ^{0.5}	1

\$

Question 20(c)(ii) Gradient

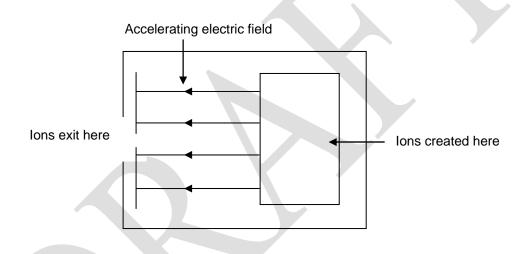
	Description	Mark
two significant figures		1
since both Z and λ are give	n to 2 SF (and gradient is the ratio of these two)	1

Question 20(d) Gradient

Description	Mark
gradient = $3.0 \times 10^{-4} = 6.60 \times 10^8 \sqrt{hc}$	1
$\therefore hc = \left(\frac{3.0x10^{-4}}{6.60x10^{8}}\right)^{2}$	1
$h = \frac{2.1 \times 10^{-25}}{3 \times 10^8} = 6.9 \times 10^{-34} \text{ Js}$ reasonable range = 6.4 - 7.3 (x10 ⁻³⁴) If using 2.5x10 ⁻⁴ , h = 4.8x10 ⁻³⁴ \text{ Js}	1

Description	Mark
Into the page.	1

Question 21(b) Identify ion


Mark
1
1
1

Question 21(c)

lonising atoms with an electrons beam

Description	Mark
Electrons in the beam have large kinetic energies and can remove an electron from the	1
target atoms i.e. ionise the atom positively.	1

Question 21(d)(i) Accelerating electric field

	Description	Mark
Straight lines, orientation to left.		1

Question 21(d)(ii) Kinetic energy of ion

Kinede energy of for	
Description	Mark
$\Delta E_{k} = Vq$	1
$E_{k} = (25000)(1.6 \times 10^{-19}) = 4 \times 10^{-15} \text{ J}$ OR 25 keV (2 marks)	1

Description	Mark
$r = \frac{mv}{Bq}$	1
$r = \frac{(2.656 \times 10^{-26})(5.49 \times 10^{5})}{(8)(1.6 \times 10^{-19})} m$	1
r = 0.114m.	1

Question 21(e) Isotope ratios

Description	Mark
he ice core will have a ratio of ${}^{18}_{8}$ O to ${}^{16}_{8}$ O that reflects the conditions at the time	
because the ice forms from rainfall.	1
The cave sample will have a different ${}^{18}_{8}$ O to ${}^{16}_{8}$ O ratio because of the effect of calcium	4
carbonate deposition	I
added to the effect of rainfall.	1
The final ratio of the cave sample will depend on which effect is greater.	1
i ne final ratio of the cave sample will depend on which effect is greater.	1

Physics Stage 3 exam

		3A			3B	
	Working in Motion and Electricity					
	working in	forces in a	and	Working in	Particles, waves and	forces in
	physics	gravitational	magnetism	physics	quanta	electric and
		field	magneusm		quanta	magnetic
		neiu				fields
SECT						lielus
A						
1					Х	
2			X			
3 4 5 6					X	
4			X X			
5			X			
						X
7						Х
8			X			
9					X	
10		Х				
11					X	
12			Х			
13		Х				
SECT						
В						
14				X	X	
15			X			
16		Х				
17				X	X	
18						X
19					X	
SECT						
С						
20				X	X	
21						X
		∇				